1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
| import numpy as np import random import matplotlib.pyplot as plt
def eulDistance(vector1,vevtor2): return np.sqrt(np.sum(np.power(vector1-vevtor2,2)))
def initCentroids(dataset,k): numSamples, dim = dataset.shape centerid = np.zeros((k,dim)) for i in range(k): index = int(random.uniform(0,numSamples)) centerid[i,:] =dataset[index,:] return centerid
def kmeans(dataset,k): numsamples = dataset.shape[0] cluster = np.mat(np.zeros((numsamples,2)))
cluseter_flag = True
centroids = initCentroids(dataset,k)
while cluseter_flag: cluseter_flag =False for i in range(numsamples): minDis = float('inf') minIndex = -1 for cls in range(k): dis_tmp = eulDistance(dataset[i,:],centroids[cls,:]) if dis_tmp < minDis: minDis = dis_tmp minIndex = cls
if cluster[i,0]!=minIndex: cluseter_flag =True cluster[i] = minIndex,minDis**2
for cls in range(k):
pointers = dataset[np.nonzero(cluster[:,0].A == cls)[0]]
centroids[cls,:] = np.mean(pointers,axis=0) return centroids, cluster
def plotCluster(dataSet,k,centroids,cluster): numsamples ,dim = dataSet.shape
color = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for i in range(numsamples): indx = int(cluster[i,0]) plt.plot(dataSet[i,0],dataSet[i,1],color[indx])
for i in range(k): plt.plot(centroids[i,0],centroids[i,1],color[i],markersize =12) plt.savefig("./output.png")
if __name__ == "__main__": dataset = [] f = open('./ceshi.txt','r') for line in f.readlines(): lineArr = line.strip().split('\t') dataset.append([float(lineArr[0]), float(lineArr[1])])
dataset = np.mat(dataset) k = 4 cenid,cluster = kmeans(dataset,k)
plotCluster(dataset,k,cenid,cluster)
|